Ghost-removal image warping for optical flow estimation
نویسندگان
چکیده
منابع مشابه
Image Warping in Dermatological Image Hair Removal
The paper focuses on solving the problem of hair removal in dermatology applications. The proposed hair removal algorithm is based on Gabor filtering and PDE-based image reconstruction. It also includes the edge sharpening stage using a new warping algorithm. The idea of warping is to move pixels from the neighborhood of the blurred edge closer to the edge. The proposed technique preserves the ...
متن کاملStatistically Optimal Averaging for Image Restoration and Optical Flow Estimation
In this paper we introduce a Bayesian best linear unbiased estimator (Bayesian BLUE) and apply it to generate optimal averaging filters. Linear filtering of signals is a basic operation frequently used in low level vision. In many applications, filter selection is ad hoc without proper theoretical justification. For example input signals are often convolved with Gaussian filter masks, i.e masks...
متن کاملVariational Optical Flow Estimation for Particle Image Velocimetry
We introduce a novel class of algorithms for evaluating PIV image pairs. The mathematical basis is a continuous variational formulation for globally estimating the optical flow vector fields over the whole image. This class of approaches has been known in the field of image processing and computer vision for more than two decades but apparently has not been applied to PIV image pairs so far. We...
متن کاملHigh Accuracy Optical Flow Estimation Based on a Theory for Warping
We study an energy functional for computing optical flow that combines three assumptions: a brightness constancy assumption, a gradient constancy assumption, and a discontinuity-preserving spatio-temporal smoothness constraint. In order to allow for large displacements, linearisations in the two data terms are strictly avoided. We present a consistent numerical scheme based on two nested fixed ...
متن کاملDiscrimintive Image Warping with Attribute Flow
We address the problem of finding deformation between two images for the purpose of recognizing objects. The challenge is that discriminative features are often transformation-variant (e.g. histogram of oriented gradients, texture), while transformation-invariant features (e.g. intensity, color) are often not discriminative. We introduce the concept of attribute flow which explicitly models how...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: MATEC Web of Conferences
سال: 2019
ISSN: 2261-236X
DOI: 10.1051/matecconf/201927702002